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Abstract

The magnetostriction effects are first discussed in the frame of the magneto-elastic
resonance to define important values mainly the magneto-elastic coupling factor, kss.
We review the different magnetostrictive materials according to their developments,
with a special attention to amorphous ribbons to design magnetostrictive resonators.
Furthermore, we focus on the current instrumental setups including their limitations,
and then on the usual measurement procedures of the resonators, particularly the
frequency domain measurement. In addition, an innovative approach based on the
magneto-elastic impedance is reported, together with an analytical model which estab-
lishes the complete transfer function between the input and output voltages. This model
is applied to ribbon-shaped materials, particularly to determine the magneto-elastic
coupling factor. These resonators are suitable to sensing applications, i.e., to estimate
the influential quantities such as the temperature, magnetic fields and mass stuck on the
resonating surface.

Keywords: resonant frequency, magnetostrictive resonators, magneto-mechanical
coefficient, analytical model, sensor

1. Introduction

This chapter deals with the magneto-elastic resonance: this form of mechanical resonance
involves magneto-mechanical properties of some ferromagnetic materials. Consequently, it
presents some similarities to other types of resonance, such as the existence of resonant and
anti-resonant frequencies. The behaviors of magnetostrictive resonators, which also result
from magneto-mechanical properties, give rise to some specific particularities. After introduc-
ing the main features on magneto-elastic resonance, we first report on the magnetostriction
effects and the relevant characteristics of subsequent materials in order to design magne-
tostrictive resonators. Then, we detail an analytical model in the case of a ribbon-shaped

I N‘r EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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14 Resonance

resonator allowing the magneto-elastic coupling factor to be estimated. Finally, we propose
some resonator based on a magnetostrictive amorphous ribbon, which behaves as a good
platform for sensing applications while we report on the emblematic example of freezing-rain
Sensor.

2. Magnetostriction effects

Resonance could be defined as a phenomenon that occurs when a vibrating system has
greater amplitude at some specific resonant frequencies. In case of magneto-elastic reso-
nance, the vibrating system can be established from a magnetostrictive material. One can
consider, in a first approach, this mechanical resonance occurs with a magnetic cause. To
obtain the excitation, i.e., a mechanical vibrating strain, one applies a vibrating magnetic
field and the magnetostriction converts magnetic variation into strain variation. In return,
when resonance occurs, strain is at a maximum. As a consequence of magnetostrictive
effects, magnetic values are also at maxima resulting from maximum of mechanical values.
Thus, magneto-elastic resonances result from mechanical and magnetic resonances. Conse-
quently, studying magneto-elastic resonance requires knowing of magnetostriction effect, as
presented in the next section.

2.1. Magnetostriction
2.1.1. Definition

Magnetostriction can be defined, in a first approach, as the property of some ferromagnetic
materials to modify their shape due to change in magnetization [1, 2]. In practice, only some
ferromagnetic materials have significant shape and magnetization correlated changes. This
phenomenon was discovered by James Prescott Joule in 1842 studying a sample of iron. Since
Joule’s discovery, many magnetostriction effects have been highlighted, such as bending,
torsion, density changes, or Young’s modulus variations. We still use the term of magnetostric-
tion for all magneto-elastic properties. This chapter is only concerned by changes in shape.
More precisely, two effects are involved in common magnetostrictive resonators, the Joule and
Villari effects; the last one corresponds to the inverse magneto-elastic effect.

2.1.2. Joule and Villari effect

A ferromagnetic material with parallelepiped shape elongates or shrinks under a magnetic
field according to the longitudinal Joule effect. The reversal effect, change of magnetization
while submitted to a mechanical stress is known as Villari effect. These effects are depicted by
the material magnetostriction curves which describe the variation of the relative deformation

A= %, where L is the length of the sample, versus H the magnetic field applied to the material.

A typical curve is characterized by a maximum, as illustrated in Figure 1; in addition, one
clearly observes some hysteresis also commonly called “butterfly loop,” because of its sym-
metrical shape. In the next part, curves are restricted to the positive fields. The asymptotic
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Figure 1. Typical magnetostriction curves in form of butterfly loop.

elongation or shrinkage gives rise to magnetostriction at saturation: the maximum value A
corresponds to the saturation magnetostrictive coefficient, i.e., the strength of the magneto-
elastic coupling, which can be thus either positive or negative, respectively. It is usually found
in the order of 10~° but could rise up to 1072 in the case of Terfenol-D (Tb,Dy1_xFey, x ~0.3),
which behaves as the best magnetostrictive material and is commonly applied as engineering
magnetostrictive material. The magnetostriction can be described by a quadratic function and
the sign is strictly dependent on the material, not on the direction of the applied magnetic field.
Note that it differs from piezomagnetism (analogously piezoelectric effect), which is character-
ized by a linear coupling between the mechanical strain and the magnetic polarization.

It is important to emphasize that function A(H) is not linear and could be more rugged than the
typical one illustrated in Figure 1. Indeed, A(H) is not strictly monotonous (as for Fe), for
which one can distinguish two regimes with positive and negative values of A, corresponding
to an elongation and shrinkage of material for small and larger fields, respectively.

In addition, the deformation is not exclusively dependent on the magnetic field. Indeed,
among the other parameters, the temperature plays an important role: when the temperature
increases, the elongation decreases as the magnetization is reduced. The magnetostriction
curves also depend on the direction of the applied field respect to the easy magnetization
axes, i.e., the shape and the chemical purity of the sample and also on its thermomagnetic
history.

2.1.3. Causes

The physical mechanisms of the magnetostrictive effects have not been yet described successfully
at the atomic scale, to the best of our knowledge. But they are not necessary for our current topic.
On the opposite, we would only keep in mind a simple picture, as schematized in Figure 2: the
main idea is based on the rotation of magnetization in presence of an external magnetic field,
which may originate some new arrangements of magnetic domains causing either elongation or
shrinkage of the magnetostrictive material [3].

One can distinguish different contributions to the magnetic energy from nano to microscale:
exchange interactions, dipolar interactions, magneto-crystalline anisotropy, shape, interface,

15



16 Resonance

Figure 2. Schematic picture depicting the magnetostriction caused by rotation of magnetization.

and magneto-elastic anisotropy energies. When the material is submitted to mechanical
stresses and/or an external magnetic field, the equilibrium of the deformations corresponds to
the minimum of the total energy. In the case of a crystalline magnet, the application of uniaxial
mechanical stress originates a magnetostrictive contribution to the magnetic anisotropy. It is
clear that this magneto-elastic contribution results from the magneto-crystalline term: indeed,
under stress crystals can be considered as stressless crystals with a slightly different crystalline
structure. In the case of polycrystalline materials, the saturation magnetostriction is an average
over different crystal orientations.

Magnetostrictive materials are suitable to convert magnetic into kinetic energy and vice-versa:
they can be thus applied to design actuators and sensors. They are implemented in sonars,
generation of ultrasound for medical, industrial uses, or for active control of noise and vibra-
tion, using simultaneously the opposite effect for vibration measurement and the direct one to
carry out the corrective action.

2.2. Characteristic quantities, magneto-elastic coupling factor
2.2.1. Curves, magnetostriction at saturation and slope

The useful information expected by engineers and technicians is the magnetostriction curve, as
plotted in Figure 1, which characterizes the magnetostrictive material [4]. Indeed, one could
easily define the maximum of deformation and estimate A, which is usually reported by the
manufacturer in the literature. This value presents the advantage to be unequivocal and weakly
dependent on further physical parameters except temperature.

This value is able to predict the maximum change in length as AL, =As-L but does not

describe the sensitivity of the magneto-mechanical conversion. But the slope d = (%) is a

useful representation of materials properties, since it indicates how rapidly the strain changes
with the relevant applied field, according to Jiles [5]. The largest slope, dmax, corresponds to the
best operating point. But, it is important to emphasize that literature does not report on dpax
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but on Ay, because of some dependencies on influence quantities (especially dpax, sometimes
noted dj;, depends on the direction of the magnetic field).

2.2.2. Magneto-mechanical coupling coefficient k33

The more relevant characteristic of a resonator is obviously the magneto-mechanical coupling
coefficient k33, a dimensionless parameter, which describes the energy conversion as ks3” is the
energy conversion ability from magnetic into elastic energy and inversely. The values of kz3
which can be estimated from the slope of the curve are expected to be theoretically ranged
from O up to 1. The larger value which is 0.97 has been observed for an amorphous metallic
ribbon.

Du Trémolet de Lacheisserie has proposed an equation to estimate the effective magneto-
mechanical coupling ks3 coefficient from the calculation of Gibbs free energy, as

v
ks = ds3y | — 1)
sz’

where, 135” is the permeability at constant stress and Y™ the Young’s modulus at constant field
(certain conditions are reported in a next section). Indeed, the effective value of k33 depends on
the boundary conditions (geometry and fixation of the magnetostrictive material acting as
resonator) and the mode of induction of the magnetic field.

2.3. Materials

Since Joule and his discovery of magnetostriction on an iron sample, many new magnetostric-
tive materials have been identified [3, 5, 6]. Hartemann proposed [1] to classify them into four
main categories: nickel and metallic crystalline alloys, the first materials to be used, ferrites,
iron-rare-earth alloys, and amorphous alloys. But, this classification has to be updated with
nanocrystalline alloys as obtained from subsequent annealing on as-quenched alloys on one
hand, and the newer Fe-Ga based alloy (Galfenol) on the other hand.

2.3.1. Nickel, metallic alloys, and magnetostrictive ferrites

Polycrystalline nickel was the first magnetostrictive material to be used as a transductor.
Figure 3 compares the magnetostriction curves characteristics of Ni (thick) and Fe (thin),
revealing negative and positive magnetostriction coefficient, respectively.

Nickel which is semi-soft (or semi-hard) magnetic material, gives clear evidence for a quite
large linearity range with a magnetostriction at saturation A; of —35 ppm and a magneto-
mechanical coefficient ks; of 0.3. In addition to a significant hysteresis, Ni characteristics are
strongly dependent on its chemical purity and the annealing conditions to get polycrystalline
structure: nevertheless Ni remains an excellent standard. As abovementioned, A, (Fe) depends
on the external field, giving rise to positive and then negative magnetostrictive behavior.

17
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Figure 3. Magnetostriction curves characteristic of Ni (thick) and Fe (thin).

The magnetostrictive properties of Fe-Ni alloys result from a combination of their respective
positive and negative magnetostrictive and magneto-crystalline anisotropies: it allows differ-
ent magnetostrictive characteristics to be tuned as a function of the chemical content. Thus,
Permalloy has high permeability and magnetostriction near zero for Permalloy 78 (78% Ni) but
Permalloy 45 is greatly magnetostrictive (As =27 x 107° ksz = 0.3). Table 1 lists some physical
characteristics of iron-aluminum (Alfenol), nickel-cobalt, and iron-cobalt alloys.

In the case of ferrites with spinel structure, the magnetic properties are not only dependent on
the nature of cations, but also on their distributions into the tetrahedral and octahedral sites
giving rise to either direct, inverse, or mixed structures. Consequently, the conditions of elabora-
tion using the ceramic route, the chemical nature, and content of their atomic elements provide
large varieties of materials. Co-based ferrites are excellent candidates as magnetostrictive mate-
rials (see characteristics listed in Table 1, in addition to their high resistivity compared to those of

Material As (ppm) k33 max () dj3 max [6] (105 m/a)
Fe -9 0.3
Ni -35 0.3 -3
Co —62 —-0.2
Permalloy 45 (Ni45-Fe55) 27 0.3

Permalloy 80 (Ni80-Fel5-Mo5) <1.2

Alfer 13 (Al 13-Fe 87) 40 03

Co 4.5-Ni 95.5 —-36 0.5

Fe 30-Co 70 laminated 130

Ferrites Fe;O4 40 0.36

Ferrites CoFe,Oy4 —110

Terfenol (TbFe,) 1753 0.35

Terfenol-D (Tbg 3Dyy sFes) 1100 0.75 57
Galfenol 250 0.7

Table 1. Specific characteristics (As, Kazmax d3zmax) Of sSome selected magnetostrictive materials.
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metal alloys). Microferrites can then be used at higher frequencies, but their mechanical fragility
remains a serious weakness.

Nickel and metal alloys are used mainly as actuators for applications requiring small displace-
ments with a large force like for ultrasound emission.

2.3.2. Iron-rare-earth compounds

As noted by du Trémolet de Lacheisserie, studies developed on iron-rare-earth compounds are
exemplary in the field of magnetic materials. The aim of the researchers was to combine advan-
tages of 3d metals and/or alloys able of operating at room temperature and under relatively
small magnetic fields, but with poor magnetostrictive effects and 4f metals which exhibit high
values of magnetostriction coefficient but very low Curie temperatures. Those studies developed
in the 70’s led to significantly improved magnetostrictive materials with deformations 50-100
times larger. Thus, Clark first developed the TbFe, alloy named Terfenol (TERbium, FEr, Naval
Ordnance Laboratory), which exhibits a relatively high Curie temperature with giant magneto-
striction but with a great magneto-crystalline anisotropy. Then, he elaborated a mixed alloy
combining two different rare-earth species, giving rise to Tbg 3Dy, Fe, which exhibits rather
similar advantages than Terfenol but is easier to be magnetically saturated (A, = 1100 x 10,
ksz = 0.75). Terfenol compounds which behave as hard magnets are brittle and expensive.
According to its characteristics, Terfenol-D remains currently an excellent magnetostrictive mate-
rial. Indeed, it is suitable to be applied as magnetostrictive actuator at room temperature, but
with restriction in use as resonator. We report magnetostriction curve under preload (Figure 4): it
appears different curves and in particular, the maximum slope of the curves reported are 15, 80,
and 40 10~° A/m for pressures of 0, 20, and 40 MPa, respectively. Such values are greater than
those predicted by du Trémolet de Lacheisserie [4].

It is important to emphasize that, as observed in its website [7], Etrema™ reports the curve
established without load which does not allow correct values of ks; to be extrapolated; indeed,
as illustrated in Figure 4, the values of the magneto-mechanical coefficient can be well esti-
mated providing that the material (Terfenol-D) is submitted to important loads. Thus, one has

2500A A (ppm)

H (kAfm)

200 300 400

-400 -300 -200 -100 0 100

Figure 4. Magnetostriction curve characteristic of Terfenol-D with and without preloading.
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to be very careful to estimate the value of ks;. In addition, most of resonators work without
load, making that Terfenol cannot act as an excellent magnetostrictive material, contrarily to Ni
which possesses a large ks; value with a small polarization.

2.3.3. Amorphous and nanocrystalline material

In the case of usual resonators, the highest values of magnetostriction coefficient are not strictly
necessary but the key parameter does result from the largest possible magnetostrictive effect
obtained in presence of a magnetic field as small as possible, i.e., large d and ks3 values [6, 8].
Some ribbon-shaped amorphous glasses possess very good magneto-elastic properties (great
ks; for small field) associated to excellent mechanical properties. Let us remember that the
metallic amorphous ribbons, also called metallic glasses, are obtained by rapid quenching from
the induction melt (10° K/s) using the roller technique: a molten alloy is ejected by a flume onto
a cooled rotating wheel. The experimental conditions (temperature of the melt, size of capillary,
distance capillary-wheel, nature and surface state of the wheel, protective gas, etc.) have to be
optimized to get regular ribbons over large lengths (up to several km). Their thicknesses—
typically ranged from 20 to 40 pm—favor some mechanical brittleness which depends on
quenching conditions. The amorphous ribbons are usually soft magnets with relative perme-
ability more than 10° and coercive field near 1 A/m, very low magneto-crystalline anisotropy
while their magnetostrictive properties are strongly correlated to their chemical composition
(particularly that of Fe, Ni, and Co). The magnetic properties can be improved by annealed
under a magnetic field, transverse to increase magnetostriction (longitudinal to annihilate). The
largest magneto-mechanical coupling coefficient k33 was measured on Metglas 26055C ribbon
annealed at 390°C under a transverse in-plane magnetic field of 400 kA/m for approximately
10 min. The magneto-mechanical coupling coefficient ks3 is close to 1. We report technical
properties of two ribbons of metallic glasses, the best 26055C and the most used 2826 MB.

As listed in Table 2, the main characteristics of metallic amorphous ribbons make them good
candidates as magnetostrictive resonators (soft magnet, mechanically soft, large ks3), despite
their weak thicknesses. Nanocrystalline alloys (such as FINEMET, NANOPERM, and HITP
ERM) which result from a subsequent annealing of the amorphous precursor do not exhibit
better magnetostrictive characteristics. An alternative is related to bulk amorphous glasses
(BMG) which could be obtained as cylindrical rods by mold casting and suction casting
techniques: some of them possess excellent soft or hard magnetic properties with saturation
magnetostriction values ranged up to 40 x 10°°.

3. Magnetostrictive resonator

3.1. Structure

Resonators consist of a magnetostrictive material, one or two exciting coils, one or two pick-up
coils and eventually a support (a schematic view is given in Figure 5) [9, 10]. Exciting coil,
either Helmholtz type or a rather long cylindrical coil, aims to produce a homogeneous
magnetic field with an alternating component and a DC component. Exciting coil converts
vibrating current into vibrating field. This field induces vibrations in the ribbon-shaped mate-
rial with a resonant frequency which is dependent on its size, usually length L.
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Properties Units Metglas 2605SC Metglas 2826 MB
Composition Feg1B13.55135C> FeyNizsBsMoyg
Thickness (um) 17 29.2

Density kg.m? 7320 7900
Magnetostriction at saturation (ppm) 30 12
Magneto-mechanical coupling coefficient — 0.97 (H=50 A/m) 0.3
Crystallization temperature K 480 410

Young’s modulus GPa 25 100-110
Résistivité électrique n.Q.m 1.35 1.38

Perméabilité relative maximum — 300,000 800,000

Table 2. Specific physical parameters characteristic of two ribbon-shaped metallic glasses.

/ exciting coil \
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Figure 5. Principle of a ribbon-shaped resonator.

As described by Grimes [10], vibrations “can be detected magnetically with a pick-up coil,
acoustically with a microphone, or optically with a laser emitter and a photo-transistor.” Next,
we focus on resonators with vibration detection based on the Villari effect, resulting from the
pick-up coil as previously mentioned.

Ideally, the best configuration would be to study a free ribbon, thus in practice, the ribbon does
simply lye on a flat and smooth surface or be centered in its middle on a support.

3.2. Operating principle, elementary model

A generator delivers a current with an alternating component to the excitating coil which in
turn generates a magnetic field proportional to the current. The magnetostrictive material
subjected to the field, is thus deformed. By applying a sinusoidal current component, the
material vibrates according to a sinusoidal mode. The excitation is the strains originated from
field’s variation, and the resonator acts thus as a mechanical resonator.

21



22 Resonance

The resonator with parallelepiped shape could be modeled as a plate, where ultrasound waves
propagate without losses. Assuming a one-dimensional problem and choosing as system a
slice of thickness dx, its mass is

dm=p-h-edx 2)

where h, e, and p are the thickness, depth, and the density of the plate, respectively.

The balance of forces represented in Figure 6 provides ijj =0(x)-S'x and f(x +dx) =

—o(x + dx)-S- x, where S is the cross-section of the resonator.

When applying fundamental principle of dynamics, it comes out:
—o(x+dx)S+o(x)S = dex%z—tzLl =>-¥= p%z—t;‘, where u is the displacement.

From both the Hooke’s law establishing the proportionality between relative elongation and

constraint, A = 3! - 0, and the expression of the elongation is given as

:dizu(x+dx)—u(x)_6u

AT dx T X ©)

du_ 1du_ — /X
one gets G — z5¢ =0 where c = \/%.

This equation can be solved using harmonic solutions u(t, x) =e?™" . u(x) with

u(t,x) = Ulej%‘ +U2e*j%‘ and assuming constraint at x = 0 with u(0)=0 and boundary

conditions 0(15) = 0(— %) =0.

Consequently, o(x) = —j2Y 2% cos (@ x), to satisfy o(x = L) = 0 involving 2L = nt(2p + 1)

where p is a positive integer.

Resonances are established at frequencies f, = (2p +1) 5 = (22’:1) : \/%, and particularly the

fundamental frequency corresponding to that characteristic of the material:

1 Y
foi'\/;- 4)

< —>
F(§+dx) f(x) X
0 u(x) u(x+dx)

Figure 6. Resonator modeling, with the stress forces.
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3.3. Measurement

By Villari effect, resonator’s vibration generates a time-varying magnetic flux, measured by the
pick-up coils. Three different routes as time domain measurement, frequency domain mea-
surement, and magneto-elastic impedance can convert this variation to estimate f,.

3.3.1. Time domain measurement

The strategy consists in exciting the resonator to its natural frequency. Then, one could apply to
the exciting coil a rectangular wave-train pulse, or even better, a sinusoidal wave-train, as the
current variation is limited by the inductance. Then the response, the pick-up coil’s voltage, is a
damped sine wave-train (Figure 7). The natural frequency can be thus determined by fast
Fourier transform (FFT), frequency counting or demodulation. FFT gives the spectrum of the
voltage which maximum corresponds to the natural frequency. Furthermore, frequency
counting consists in the determination of a number of oscillations. Thus, a comparator converts
the voltage into a rectangular shape voltage whose frequency can be easily determined by a
counter, according to the definition of a frequency. The last technique consists in demodulating
the pick-up’s signal: a phase-locked loop replaces the counter and gives voltage corresponding
linearly to the frequency. The frequency counting and demodulation techniques require less
high-performance instrumentation but remain more difficult to be well achieved. On the
contrary, FFT gives a priori better results and particularly the quality factor characteristics of
the resonance.

3.3.2. Frequency domain measurement

The resonant frequency results from the transfer function. The excitation coil is connected to a
function generator and the pick-up coil to a voltage measurement system. The generator
delivers a sinusoidal voltage as a function of frequency (sweeping mode) giving rise to V(f)
corresponding to the amplitude of the pick-up coil (as illustrated in Figure 9b). The resonant
frequency corresponds to the maximum. This measurement can be carried out using only a
spectrum analyzer that delivers the magnitude of the input signal versus frequency: such an
approach allows the resonant frequency, the anti-resonant frequency, and the resonance qual-
ity to be obtained.

exciting signal : wave train

Figure 7. Time domain measurement signals: wave train and response as continous and dashed line, respectively.
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3.3.3. Magneto-elastic impedance

The experimental setup for measuring the evolution of the impedance is close to that of
frequency domain measurement. An analyzer measures real and imaginary parts of voltage
as a function of the frequency, allowing thus the variation of impedance which is experimen-
tally similar to the transfer function versus frequency. Let us note that the instrumentation is
similar for the two techniques, but physicists prefer the later one which also gives the evolution
of the permeability.

3.4. Development

The development of a resonator requires a setup comprising polarization and excitation coils
(possibly one for both), two pick-up coils, a continuous power supply, and an analyzer, in
addition to the magnetostrictive material. Consequently, its achievement is not a difficult task
providing some rules to be satisfied.

3.4.1. The resonator

As concluded in Section 2.2, the main criterion of choice is the magneto-mechanical coefficient
or the slope of curves A(H), i.e., a material with a ks at least more than 10%, for a DC field easy
to obtained in the lab. For preliminary tests, Ni foil or amorphous 2826MB would be a good
choice according to Section 2.3, but the optimal choice depends on the application.

The output is often the resonant frequency that is inversely proportional to the length of the
resonator with parallelepiped shape. To get an acute resonance, the resonator requires a
strictly constant length L: consequently, the cutting has to be done with extreme caution.
Different techniques such as paper guillotine, laser beam, diamond wire saw, or electrical
discharge machining have to be optimized according to the brittleness of the material and
preventing from contamination and from crystallization in the case of amorphous ribbons.
After cutting, the material may undergo subsequent treatment under field in neutral atmo-
sphere to improve magnetostriction.

3.4.2. Coils and electrical setup

Polarization and excitations coils such as Helmholtz or long cylindrical solenoid, do create a
uniform field. In addition, as the field produced by a coil is proportional to the current, it is
easier to get only one coil, using links capacitor and inductor to discriminate the DC and AC
component voltage (see Figure 8). The advantage of Helmholtz coils is that the resonator is
placed outdoor, but as the field decreases with the square of the coil diameter, a large coil
creates a greater field than Helmholtz type with the same current.

The coil picks up the time derivative of flux @, =uoH- S, + oM - S, resulting from n loops of
surface S mounted around the material. Then the flux is image of the magnetization M, but
also of the magnetic field H. The field component is removed using a differential measurement
from two pick-up coils. Indeed, the second coil is identical to the first one and placed, out of the
material, symmetrically centered in the excitation field, what measured is the voltage of the
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Figure 8. Coils and electrical setup.
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Figure 9. a: Examples of frequencies responses of the maximum strains in the middle (thick,) and displacement at the
ends (thin). b: Examples of frequencies responses of the pick-up coil’s voltage.
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serial coils: u = n . The voltage u is thus proportional to the derivative of the magneti-

zation change with the sinusoidal strain.

3.4.3. Setting

The first step consists in determining the place of the pick-up coil corresponding to a minimum
of voltage without resonator in order to optimize the compensation. Then, the measuring
range has to be refined from an approximate value of the resonant frequency. The resonance
is obtained by adjusting first the amplitude of the excitation at around 1 V and scanning the
DC voltage. The final refinement of the position of the pick-up coil and the amplitude of the
AC voltage gives rise to a curve similar to that displayed in Figure 9b.
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4. Analytical model

An analytical model is thus necessary to estimate the frequency dependence of the output/input
coils voltage ratio when submitted to an electrical excitation [11]. It consists in establishing the
equations coupling mechanical and magnetic quantities.

4.1. Modeling and assumptions

3D general equations can be derived into the two following 1D Egs. (5) and (6), assuming a low
AC component of the magnetic field

B=d-6+u’-H ()

G+d-H )

<| =

where X refers to a low level AC quantity, B, H, ¢, 0, Y, d, and u” are the magnetizing flux
density, the magnetic field, the strain, the stress, the Young modulus, the slope of the magne-
tostriction curve, and the magnetic permeability at constant stress, respectively.

The ribbon is assumed to be set in the middle. The magnetic field is uniform and has two
components: Hpc and alternating H with Hp¢ > H. In addition, H is low enough to neglect the

effects of hysteresis. The complex Young modulus is expressed as Y = Y(1 + jn), where the
imaginary part takes into account mechanical and magnetic losses with 1), the damping factor
characteristic of the resonator.

The boundaries conditions are related to the two ends of the ribbon mechanically free, except
strains due to magnetostriction:

L ~ ~
/\(Z:—E):é‘g:d'H (7)
L ~ ~
/\(Z:E):é'o:d'H (8)
The vibrations resulting from the excitation field are described by the wave propagation

equation derived from Newton'’s second law:

do Qu
=P ©)
where u is the longitudinal displacement and p the density.

From Egs. (3), (9), and (6), assuming that % = 0 (uniform field), one gets

323 23
A @

oA _ oA 10
22 P e (19)
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4.2. The strain expression

Eq (10) can be solved by using harmonic oscillations expressed as

A(z,t) = e E- o5 (11)

From Egs. (10) and (11) K= = (k,+jk;) with k, = \4/\/1%605 (%TW) with k; = :/\ﬁ_vsm (*STW’)

Considering above boundary conditions, one finally obtains from Eq. (12):
A(z) = d-H (Ep +jE,) (e“kf*fkﬂz + e“ﬂ*/’kf)Z) (12)

With

3k;L

eF 43¢ 437 + o3 — deT cos? (5L) — 4e- ¥ cos? (&5 (k,L>
0s

ErO

2L — 2 e=2L + 16c0s2 (55) — 16c0s* (%) 2
s + 6F — 5 — e — 465 cos? (TL) + 4e™ % 052 (kZL) (kL
Fo = el — 2 e=2kL + 16sin® (*F) cos? () "2

At this stage, the frequency variation of the strain can be plotted but the displacement at ends
of the resonating ribbon is preferred. This second curve can be obtained by means of a
contactless measurement as laser vibrometer or microphone.

The expression of the motion is determined from Egs. (3) and (12):

LI (E - o(—kitike)z olki—jk)z
uiz) =a i - ;

=B+ E0) (e * )

Figure 10a reports the frequencies’ responses of the maximum strain (in the middle) and
displacement (at the ends) for a ribbon taken from an anti-theft which is Vitrovac 4040 (Fezo
NizoMo0,4SigB1,; p = 7400 kg.nf3 and L = 37 mm. The refined characteristics are ks3 = 0.312,
d =20 x 10~ m/A, Hacmax = 4 A/m and 1 =0.012.

The mechanical responses are quite different from the measurement based on the inverse
magnetostrictive (Villari) effect (Figure 9b).

4.3. Expression of the frequency response

As coils associated with the magnetostriction convert mechanical quantities into electrical
quantities, the next step consists thus in substituting mechanical by magnetic quantities.

From Egs. (12), (5), and (1):

B

p= = =y’ (1 — kas® + ks3? (ErO +jEio) (e(ikﬁjmz + e(kﬁjkyﬂ)) a3
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Figure 10. Evolution of resonant and anti-resonant frequency f, (+) and f, (x), Young’s modulus Y, magneto-mechanical
coefficient k33, damping 1), slope of the magnetostriction curves d, and strain A as function of DC field for Vitrovac ribbon.

The current applied to the exciting coil assumed to be only inductive is

i(t) = Vefixe V2sin(wt), (14)

exc

where Vegrexe and Ley. correspond to the rms voltage and the inductance of the excitation coil.
As the B magnetic field can be neglected out of the resonating ribbon, it is expressed as

B=u-mn-i (15)

assuming an infinitely long solenoid coil where n;: number of loops per unit length

From Egs. (13)~(15), one gets than B(z) = 2v/2: () ‘L/“”Zj V2sin(wt)-p(z)
d (J[Ié n,»dz»B(z)S)
The output voltage is calculated as:o(t) =42 = >~~~

The frequency response defined as T = % where V) corresponds to rms value of V(t) is then:

. —ki+jk.)ak ki—jk.)b% —ki+jk )bk ki—jk:)ak
k332 .Er0+]Ei0' (e( +j )“2+e( Jh )by _ p(=kitjk)by _ p(ki—j )%)

T=Ty[1+2 .
0 1—kss? 1(b—a) ki — jkr

S . 27’11,2

(Wlth)TO - Lexe l(b - {Z)

. (1 oy k332) [Jg

The frequency response T is function of a, b, L, np, Lexo, S, 1, kaz, 1, L Y, p, and f. While
considering T function of Ty, which then becomes a parameter, T is function of Ty, a, b, L, k33, p,
LY, n, and f.

It is important to emphasize that the gain depends on not only the material parameters (L, ks3,
1, Y), but also on the size and position of the pick-up coil (a, b, and 1).
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A typical response is plotted in Figure 9b. The resonant frequencies, noted f and f; or f, for
the fundamental one can be estimated from Eq. (4). The anti-resonant frequencies, f,y, are not
observable when studying strain response (Figure 9a). One observes in Figure 9b reversal of
some anti-resonant harmonic frequencies when they are smaller than the resonant frequency:
details are reported in [12].

5. Applications of magnetostrictive resonator’s characterization

This model allows interestingly to estimate the values of ki3, 1, Y, Ty, from a frequency
response, providing that a, b, L, 1, and p are known [12]. The strategy consists first in saving
couples of data (f, T) from a classic analyzer and then to fit them using a least squares method

to determine the set (kz3, 1, Y, T). In addition, from Eq. (1), k33 = da3 /%, it becomes possible

to estimate the value of d and then by integration that of strain A. Figure 10 displays the
different data characteristic of Vitrovac sample. It is important to emphasize that the present
contactless and cheap method is well suitable to characterize soft magnetic resonators.

6. Influence quantities

The frequency response of a resonator is strongly dependent on its geometry such length L, its
physical properties (u°,Y, p), and the operating conditions. But, some particular quantities may
influence the sensing response of the magnetostrictive resonators.

6.1. Effects of field and temperature
6.1.1. Effect of field

The magnetostrictive effects depend obviously on magnetic field which is an unavoidable
influence quantity, but easily quantified. The thicker line in Figure 11 describes the variation
of resonant frequency, at 20°C, versus the applied field. From Eq. (4), resonant frequency

A

(A, (kHz)

601

501

58

. H(kA/m)
) 250 500 750 1000

Figure 11. Evolution of magnetostriction curves for 20°C and 100°C (thick and thin line, respectively).
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appears as a function of Y'/? assuming the density constant, also labeled as AY effect [13]. The
variations of d or ks versus the field are sources of perturbation and can be considered as
influence quantities which are intrinsic to the material: consequently, one does control that d
remains constant in a wide range, i.e., Ni is a better choice than amorphous ribbon.

6.1.2. Effect of temperature

As magnetization decreases with temperature, magnetostriction does the same. Figure 11
compares frequency response versus magnetic field for two temperatures for our ribbon
(thicker line corresponds to 20°C and the thinner one to 100°C) [14]. One concludes that
increasing the temperature increases the minimum of resonant frequency, but decreases ks3.
The temperature proves as an important influence quantity with change of resonant frequency
up to 15%. This effect can be reduced by tuning the DC field lower than the anisotropy field
while that of the thermal expansion can be neglected.

6.2. Effect of a mass stuck on the surfaces

Any mass coated on the resonator tends to absorb vibrations: the effect of inertial mass Am

coating the resonator has to be studied, assumed to be uniformly applied. In Eq. (2), the mass

of the system, a slice of thickness dx, changes from dm=p-e-d-dx to p-e-d-dx + Am "’T". This

A

change acts equivalent to that of density from p to p<1 + Lp—’;;) Then the resonant frequency

becomes:

(16)

It is expected only a decrease of f;. Indeed, one observes a decrease of the maximum due to the
losses generated by the friction between the resonator and the coating mass.

6.3. Effects of operating conditions

Any cause of frictions originates from an influence quantity, among them the viscosity and the
density of the fluid wrapping the resonator [10]. An increase of viscosity increases the losses of
the resonator and then affects damping ratio n. Such an effect can be quantified by comparing
the frequency responses corresponding to two different values of damping: one expects a
decreasing of the maximum concomitant to the decrease of the resonant frequency which
significantly differs when the damping ratio increases (see Eq. (4)). Consequently, the attach-
ment of the resonator disturbs strongly the frequency response.

7. Magnetostrictive sensors

7.1. Freezing-rain sensor, an emblematic example

Freezing-rain sensors which are the emblematic examples of magnetostrictive resonators,
particularly because of the non-contact measurement, are used to detect the icing conditions
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from the mass deposition of ice layer stuck on their surface as well as its growth [15]. The
aerospace manufacturer Goodrich™ proclaims that “its sensor detects the presence of icing
conditions so that appropriate actions can be taken to prevent damage to power and commu-
nication lines, to warn of road hazards, or to keep ice off wind turbine blades or a plane’s
wings.” It is also announced that “surfaces are automatically defrosts itself when ice accumu-
lation reaches 0.5 mm.” Technical available information (including natural resonant frequency:
40 kHz, frequency decreases to 130 Hz, strut height of 2.54 cm, and strut diameter: 3.10 cm, the
material is a nickel alloy rod) allows us to make some calculations. But boundaries” conditions

differ from our model: free at both ends, here fixed-free than the frequency is fy = ﬁ . \/%, in

our case the displacement in the middle is zero, it appears the ribbon fixed in the middle.
Taking Young’s modulus and density of nickel, respectively 200 GPa and 8908 kg.m >, from a
length of 2.54 cm gives a frequency of 47 kHz.

The frequency, for a cylindrical resonator, with a thickness of ice e;c is given by

fio 1 Y
0 4L, Pice e )
4L p(1+ (@ree) 42)>

pd

17)

Thus, the values of the resonant frequency and its shift are estimated at 47 kHz and 85 Hz
using Ni resonator, which are rather consistent with those given the manufacturer (40 kHz and
130 Hz) obtained with Ni based alloy resonator. Finally, we do emphasize that the sensitivity
of the sensor is essentially due to the strut diameter (see Eq. (17)).

7.2. Chemical sensor

Magneto-elastic sensors can be used to detect chemicals such as carbon dioxide [16] or ammo-
nia [17], biological cells [18], or to measure pH [19]. The principle is to detect the mass of
chemical or biomass stuck on the surfaces. Using amorphous ribbon, the sensibility is excel-
lent. The difficulty is to functionalize the surface in such a way that the product to be detected
sticks the surface and no other contaminating elements. Ruan et al. describe the functiona-
lization process to design a sensor for measuring ricin in solution [19]. The sample is first cut
using a computer controlled laser cutter. Then it is coated with a 10 nm Cr layer and a 140 nm
protective Au layer, with appropriate annealing treatment before functionalization. Magneto-
strictive sensors act as excellent platforms to detect very low mass while the wireless and
passive nature of these devices allows remote measurements.

7.3. Electronic article surveillance

Magnetostrictive resonators are involved in anti-theft tags which are fixed to merchandise.
Tags consist of two mechanically independent free strips, one of a magnetostrictive amorphous
ferromagnetic ribbon, and the second one of a magnetically semi-hard film acting as biasing
magnet and switch to activate and deactivate the sensor. The good magneto-elastic coupling of
the first strip originates the conversion of magnetic energy into mechanical vibrations. Detec-
tion gantries emit bursts at frequency close to that of the resonator (58 kHz) inducing thus
longitudinal vibrations, which continue even after the burst is over. It results some change in

31



32 Resonance

magnetization of the amorphous strip and induces thus an AC voltage to activate the detection
gantry’s antenna. These tags which are thicker than electromagnetic ones are cheaper and have
better detection rates, but vibration and therefore detection can be deleted, when the sensor is
submitted to a mechanical pressure (that of the robber!).

7.4. Magnetic sensor, thermometer, and others

The resonant frequency depends on both magnetic field and temperature which can be also
measured by a resonator. Garcia-Ambas et al. [14] have investigated the possibility of temper-
ature measurements from the temperature dependence of the magneto-elastic resonance fre-
quency: it occurs when the magnetic biasing field applied to the resonator is close to its
anisotropy field. But the sensitivity of the measurement is dependent on the temperature
dependence of the magneto-elastic, which is self-correlated to that of the anisotropy constants;
these low prize magnetostrictive sensors have the great advantage to make remote measure-
ments. In addition, they can be also involved for differential and multiple measurements.
Literature reports several possible applications such as stress [20] and strain [21] measure-
ments or environmental parameters such as viscosity [22].

8. Conclusion

The aim of this chapter deals with an overview of magnetostrictive resonators, their own
principles and their respective performances including sensing application domains and limi-
tations. The development of some analytical model allows the characteristics of magnetostric-
tive to be estimated and the main influential quantities to be defined: thus, it does facilitate the
design of new ribbon-shaped resonator suitable for specific applications.
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